Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 26(6): 882-893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37933838

RESUMEN

Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.


This pilot-scale study provided insights to resolve the detergent-contaminated wastewater issue, using floating treatment wetlands (FTWs) augmented with bacteria. The FTWs augmented with bacteria immobilized on a polystyrene sheet and vegetated with Brachiaria mutica led to high degradation of LAS, a toxic compound of detergent, from the contaminated water.


Asunto(s)
Detergentes , Contaminantes Químicos del Agua , Humanos , Humedales , Poliestirenos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Bacterias , Agua
2.
Environ Dev Sustain ; : 1-44, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36687737

RESUMEN

The current industrial and economic activities in Sindh Province, Pakistan, polluted the region's water, air, soil, and marine resources. However, there is a rising demand for eco-friendly production, and it is important to develop new policies and tools to combat environmental degradation and enhance economic development. Cleaner Production (CP) provides opportunities to address many of these issues. Employed method for this study was based on three approaches: a literature review and stakeholder mapping; a collection of data and information from key stakeholders through focal group discussions, consultative workshops, and one-on-one meetings; and analysis and synthesis of data that were gathered from different sources. The analysis of collected information provides an overview of CP strategies moving forward. Participant workshops gave in-depth information on policy implementation, technological impediments to methods that have been employed elsewhere, and needed capacity building as well as financial consequences of policy implementation. Through increasing financial resources and institutional resources, the expansion of CP will help to replace the conventional methods of waste treatment with an eco-efficiency approach to preventing pollution at the source, thus reducing the need for expensive pollution control and management costs for environmental compliance. Experiences, achievements, and implementation pitfalls from this study can provide a lesson to other developing countries to improve their economic and environmental sustainability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...